

Appendix D8 Air Quality Supplemental Information

Contents

Appendix I	D. Air Quality Supplemental Information	D-1
	REGIONAL CRITERIA POLLUTANT AND EMISSION BURDEN ANALYSIS	D-1
	CARBON MONOXIDE MICROSCALE ANALYSIS	
D.2.1	CAL3QHC Model Options	
D.2.2	Results Processing	
D.3	AVAILABILITY OF ELECTRONIC FILES	D-2
Figures		
Figure D-1.	Maple Rd and Bailey Ave Receptor Locations and Free Flow Links	D-1
Figure D-2.	Maple Rd and Bailey Ave Receptor Locations and Queue Links	
Figure D-3.	Niagara Falls Blvd and Brighton Rd/Maple Rd Receptor Locations and Free Flow Links	D-3
Figure D-4.	Niagara Falls Blvd and Brighton Rd/Maple Rd Receptor Locations and Queue Links	D-4
Tables		
Table D-1.	Emission Factors for 20-year Horizon Estimates in grams/VMT	
Table D-2.	CAL3QHC Meteorological Inputs	D-2
Table D-3.	MOVES Run Specifications Options for CO Analysis	
Table D-4.	Link IDs and Emission Factors from Project Scale MOVES Run	
Table D-5.	Predicted Worst-Case One-Hour CO Concentrations (ppm)	D-2
Acronyn	ns	
BRT		Bus Rapid Transit
	U.S. Env	
	Greater Buffalo Niagara Re	•
		· ·
		•
	New York State	
	Particulate matter less tha	
VMI		vehicle miles traveled

Appendix D. Air Quality Supplemental Information

This appendix includes additional technical details related to the regional emissions burden analysis and carbon monoxide microscale analysis that are presented in Air Quality Section 4.14.

D.1 REGIONAL CRITERIA POLLUTANT AND EMISSION BURDEN ANALYSIS

A regional (or mesoscale) analysis of a project determines a project's overall impact on regional air quality levels. A regional analysis was performed for the LRT Build Alternative and the BRT Build Alternative using methodology from FTA's Capital Investment Grants Policy Guidance¹. The guidance provides information to predict the transit ridership and the associated reduction in vehicle miles traveled (VMT) due to riders replacing vehicle trips with transit trips. The guidance also provides emission factors to determine a project's environmental benefits. The Project's reduction in air pollutants were determined by multiplying the projected decrease in VMT in the Project corridor by emission factors for 20-year horizon estimates, as summarized in Table D-1. Emission Factors for 20-year Horizon Estimates in grams/VMT.

Table D-1. Emission Factors for 20-year Horizon Estimates in grams/VMT

Mode	CO NOX		VOC	PM2.5	CO2e	
Automobile 1.20		0.01	0.01	0.006	319	

Source: FTA Capital Investment Grant Policy Guidance https://www.transit.dot.gov/sites/fta.dot.gov/files/2024-12/CIG-Policy-Guidance-December-2024.pdf

D.2 CARBON MONOXIDE MICROSCALE ANALYSIS

Microscale carbon monoxide (CO) air quality modeling was performed using EPA guidance to determine the potential concentrations at receptors in the vicinity of intersections in the project area. Modeling was performed with the CAL3QHC dispersion modeling, with local traffic data and MOVES emission factors used as inputs, as described in the following sections.

D-1

Federal Transit Administration (FTA), Capital Investment Grants Policy Guidance. December 2024. https://www.transit.dot.gov/sites/fta.dot.gov/files/2024-12/CIG-Policy-Guidance-December-2024.pdf

D.2.1 CAL3QHC Model Options

The most recent version of the CAL3QHC (Version 2.0) air quality dispersion model (EPA 1995) was used with methodology outlined in EPA's *Guideline for Modeling Carbon Monoxide from Roadway Intersections*.².

Meteorological Options

The transport and concentration of pollutants emitted from motor vehicles are influenced by meteorological factors. The values for these parameters were chosen, in accordance with EPA's guidance, to maximize pollutant concentrations at each prediction site and establish a conservative, reasonable worst-case scenario. The values used for these parameters are summarized in Table D-2.

Table D-2. CAL3QHC Meteorological Inputs

Parameter	Value					
Wind Speed	1 meter/second					
Wind Direction	All wind angles from 0 to 360 degrees in 5-degree increments					
Mixing Height	1,000 meters					
Stability Class	D (neutral stability)					
Surface Roughness	108 cm (suburban land use)					
Background Concentration	0 (background concentrations were added to results)					

Site Geometry

Traffic analysts provided volume and signal timing data for each intersection evaluated unique to each alternative. Emission sources were represented as free-flow links and queue links with locations based on aerial photos of each intersection. The width of queue links are equal to the width of the travel lanes. The length of the queue links are determined by the model based on peak hour volumes and signal timing. The width of free-flow links are the width of the lanes plus 3 meters on each side of the r4aodway to account for the mixing zone created by the dispersion of the plume generated by the wake of moving vehicles. Length of free-flow links extend to a distance of approximately 1,000 feet from the center of the intersection. EPA testing of the model indicates that links beyond 1,000 feet from the receptor locations will have a minor contribution to the results.

Concentrations were predicted at receptors placed along roadway edges where the public has access, no closer than 3 meters from the edge of the roadway to avoid the mixing zone. Figure D-1 through Figure D-4 show location of emission sources and receptors. There was no change to receptor or link locations between alternatives.

U.S. Environmental Protection Agency (EPA), Guideline for Modeling Carbon Monoxide from Roadway Intersections. EPA-454/R-92-005. 1992. http://www.epa.gov/scram001/guidance/guide/coguide.pdf

Figure D-1. Maple Rd and Bailey Ave Receptor Locations and Free Flow Links

Figure D-2. Maple Rd and Bailey Ave Receptor Locations and Queue Links

Figure D-3. Niagara Falls Blvd and Brighton Rd/Maple Rd Receptor Locations and Free Flow Links

Figure D-4. Niagara Falls Blvd and Brighton Rd/Maple Rd Receptor Locations and Queue Links

Emission Factor Development

Emission factors for each source were developed with MOVES2014b using county-specific consistent with the regional emissions analysis. MOVES2014b was run at the project scale with 5 links to determine an emission factor for each of five speeds. Links were entered with a distance of 1 mile and a volume of 1 vehicle. MOVES input specifications are summarized in Table D-3. Description of the link IDs and resulting emission factors are summarized in Table D-4.

Table D-3. MOVES Run Specifications Options for CO Analysis.

MOVES Tab	Model Selections		
Scale	■ Project scale		
	■ Inventory calculation type		
	■ January weekday		
Time Span	■ Analysis years 2018 and 2040		
	■ AM (hour 9), MD (hour 13), and PM (hour 18)		
Geographic Bounds • Erie County			
Vehicles/Equipment	All on-road vehicle and fuel type combinations		
Road Type	Rural restricted, rural unrestricted, urban restricted, and urban unrestricted		
Pollutants and Processes	■ CO		
Pollutants and Processes	Processes included running exhaust and crankcase running exhaust		
Managa Innuit Data Cata	The database provided by NYSDOT was imported to account for adoption of the state's		
Manage Input Data Sets	Low Emission Vehicles (LEV) and Zero-Emission Vehicles (ZEV) plans		
0.1.1	Output was hourly emissions quantity in grams for each link ID		
Output	Post-processor was used to create a CALQHC emission factor table		

Table D-4. Link IDs and Emission Factors from Project Scale MOVES Run

Link ID	Vehicle Speed	2018 Emission Factor	2040 Emission Factor
1	Idle	16.494 g/hour	3.48712 g/hour
2	30 mph	3.23482 g/mile	1.09252 g/mile
3	35 mph	2.99555 g/mile	1.05754 g/mile
4	40 mph	2.83532 g/mile	1.02839 g/mile
5	45 mph	2.73654 g/mile	1.01646 g/mile

D.2.2 Results Processing

Output files from CAL3QHC indicated the maximum hourly CO concentration for each scenario. For comparison to the 1-hour National Ambient Air Quality Standards (NAAQS), a 1-hour background concentration of 1.7 parts per million (ppm) was added to the maximum hourly model output. For comparison to the 8-hour NAAQS, the maximum hourly output was multiplied by a persistence factor of 0.7, as recommended in the EPA Guidance, and then added to the 8-hour background value of 1.4 ppm. This process is summarized in Table D-5.

Table D-5. Predicted Worst-Case One-Hour CO Concentrations (ppm)

			2018		2040								
Processing Step	Intersection	Existing		No Build Alternative		LRT Build Alternative		BRT Build Alternative					
Otop		AM	MD	PM	AM	MD	PM	AM	MD	PM	AM	MD	PM
1-hour Maximum Modeled Concentration	Niagara Falls Blvd and Brighton Rd/ Maple Rd	0.5	0.8	0.8	0.1	0.2	0.2	0.1	0.2	0.2	0.1	0.2	0.2
	Maple Rd and Bailey Ave	0.5	0.7	0.8	0.1	0.2	0.2	0.1	0.2	0.2	0.1	0.2	0.2
1-hour Total Concentration	Niagara Falls Blvd and Brighton Rd/ Maple Rd	2.2	2.5	2.5	1.8	1.9	1.9	1.8	1.9	1.9	1.8	1.9	1.9
	Maple Rd and Bailey Ave	2.2	2.4	2.5	1.8	1.9	1.9	1.8	1.9	1.9	1.8	1.9	1.9
8-hour Total Concentration	Niagara Falls Blvd and Brighton Rd/ Maple Rd	1.8	2.0	2.0	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
	Maple Rd and Bailey Ave	1.8	1.9	2.0	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5

Notes: 1-hour total concentration = modeled result + 1-hour CO background. 8-hour total concentration = modeled result * persistence factor + 8-hour CO background. 1-hour CO background = 1.7 ppm; 8-hour CO background = 1.4 ppm, EPA persistence factor = 0.7. 1-hour CO standard = 35 ppm.

Abbreviations: AM = morning; MD = midday; PM = evening; ppm = parts per million.

D.3 AVAILABILITY OF ELECTRONIC FILES

Due to the large volume of input and output files created for this analysis, they are available electronically upon request.